Exercise 30

In Exercises 29 to 31, use vector methods to describe the given configurations.
The points within the parallelogram with one corner at (x_{0}, y_{0}, z_{0}) whose sides extending from that corner are equal in magnitude and direction to vectors \mathbf{a} and \mathbf{b}

Solution

Assuming that \mathbf{a} and \mathbf{b} are linearly independent, a linear combination of these two spans an entire plane in three-dimensional space.

$$
\mathbf{r}(s, t)=s \mathbf{a}+t \mathbf{b}
$$

By restricting s and t to be between 0 and 1 , only the points within the parallelogram with edge vectors, a and \mathbf{b}, are obtained. One of this parallelogram's corners is at the origin ($s=0$ and $t=0)$. Adding the position vector $\left(x_{0}, y_{0}, z_{0}\right)$ to $\mathbf{r}(s, t)$ makes it so that this corner is at $\left(x_{0}, y_{0}, z_{0}\right)$ instead.

$$
\left\{\left(x_{0}, y_{0}, z_{0}\right)+s \mathbf{a}+t \mathbf{b}, 0 \leq s \leq 1,0 \leq t \leq 1\right\}
$$

